INDEX

INTRODUCTION ..Following page
SAFETY INSTRUCTIONS ...Following page
WARRANTY INFORMATION ...1
WELDING ..2
GAS PRESSURES ..2
PURGING ...3
PRESSURE SETTING, METHOD 13
PRESSURE SETTING, METHOD 23
EXTINGUISHING FLAME ..4
FLAME CHARACTERISTICS ...4
FLAME SETTING ...4
TIP CLEANING ..4
TIP SELECTION ...5
WELDING POSITION ...6
WELDING TECHNIQUE ..7
BACKHAND WELDING ..8
TEMPERATURE ..9
FLUXES ..9
PREPARATION, CLEANING ..9
CUTTING - OXYGEN & ACETYLENE9
CUTTING THICK STEEL ..9
ASSEMBLY ...10
TRIGGER ...11
FLAME SETTING ..11
PROCEDURE ...11
TIP POSITION ..12
CUTTING - SHEET STEEL ...13
ASSEMBLY ...13
TRIGGER ...14
FLAME SETTING ...14
TIP POSITION ..15
PROCEDURE ...15
CUTTING NON-FERROUS METAL15
ACETYLENE & AIR HEATING ATTACHMENT15
ASSEMBLY ...16
PROCEDURE ...16
MAINTENANCE INSTRUCTIONS16-17
FAULT FINDING ..17
PARTS LIST ..18
INTRODUCTION

Reference Publications

ANSI Z49.1 - “Safety in Welding and Cutting” - American National Standards Institute, 1430 Broadway, New York, NY 10018

Compressed Gas Association (CGA)
1235 Jefferson Davis Highway, Arlington, VA 22202
- Safety Bulletin SB.8 - “Use of Oxy-Fuel Gas Welding and Cutting Apparatus”
- Pamphlet E-1 - “Standard Connections for Regulator Outlets”
- CGA Standard V-1 - “Compressed Cylinder Valve Inlet and Outlet Connections”

SAFETY INSTRUCTIONS

Warning: When using welding and cutting torches, basic safety precautions must always be followed to reduce the risk of fire and personal injury, including the following:

1. **Wear protective attire.** Always wear welding goggles to protect eyes from sparks and light rays. Use appropriate gloves and wear protective clothing. Watch for sparks in cuffs. Do not wear oily gloves.

2. **Handle gas cylinders with care.** Chain or otherwise secure cylinders to a permanent fixture. Take care when moving. To transport cylinders, remove regulators and replace with valve cap. Never use any cylinder in other than an upright position.

3. **Use “good housekeeping” in the work area.** Keep sparks and flame away from combustibles. Prepare your work area before welding or cutting.

4. **Do not oil or grease equipment.** The equipment does not require lubrication. Oil or grease is easily ignited and burns violently in the presence of oxygen.

5. “Crack” oxygen cylinder valve before installing regulator. Open valve slightly and then close. This will clear valve of dust or dirt, which may be carried into the regulator and cause damage or accident. Do not discharge flow of gas at any person or flammable material.

6. **Use check valves.** Check valves must be fitted to the torch hand piece to prevent back flow of gasses. Test check valves for correct function frequently, at least every six months or in the event of a flashback or backfire.

7. **Be sure all connections are tight.** Do not force connections. Never test for leaks with a flame. Use a soapy water solution and check for bubbles.

8. **Purge oxygen and fuel gas passages separately before lighting torch.** This will aid in preventing improper mixes of gases.

9. **Use recommended pressure settings.** Improper pressures are wasteful. Extreme pressure build up in regulators is a warning they need repair.

10. **Never use oxygen to blow off work or clothing.** Oxygen supports combustion, spark can ignite oxygen-saturated clothing.

11. **Purge system after use.** When shutting down; close cylinder valves then bleed system by emptying both hoses independently. First, open torch oxygen “OX” needle valve, drain line until pressure is zero, then close oxygen needle valve. Repeat process with torch fuel “GAS” needle valve.

12. **Do not work with damaged or leaking equipment.** Use soapy water when checking for leaks. Do not use frayed or damaged hose. Never use torch as a hammer or to knock slag from work.

13. **Handle equipment with care.** Continued good service and your safety depend on it.

14. **Keep work area well ventilated.** Flammable materials burn violently in an oxygen atmosphere. Flames and glowing materials (smoking) must be avoided when using oxygen. See American National Standard Z49.1, paragraph 8.1.2.

15. **When working with acetylene,** never use at pressures over 15 PSIG (Pounds per Square Inch Gage).

16. **Do not force connectors and threads.** The differences are intentional for the various gases.
Introducing the DHC 2000 Torch
Manufactured by Cobra Torches, Inc.

The DHC 2000 Torch has been developed over a period of twenty years. It is manufactured to exacting specifications to achieve the required characteristics.

To obtain optimum performance of the unit these instructions should be read and thoroughly understood. For those already experienced with similar type equipment, some minor and simple changes to operator technique are required and these will be emphasized throughout these instructions.

COBRA: Lifetime Warranty

The DHC 2000 Welding Cutting handpiece is guaranteed for life to the original purchaser against any defect due to faulty material or workmanship, excluding tips. Upon the discretion of the manufacturer you will receive free of charge, a replacement unit or the free repair and replacement of faulty parts. When returning a unit all original standard equipment should also be returned. Cobra Torches, Inc. accepts no responsibility for defects, damage or faulty performances caused by misuse, careless handling or where repairs have been made or attempted by unauthorized persons. No other guarantees, written or verbal, are authorized to be made on the behalf of Cobra Torches, Inc. All other conditions and warranties whether expressed or implied are, to the extent permitted by law, hereby excluded.
WELDING

STRIVE FOR EXCELLENCE THROUGH PRACTICE, PRACTICE, AND MORE PRACTICE.

The DHC 2000 TORCH shown assembled for Welding.

SAFETY CHECK VALVES MUST BE INSTALLED BEFORE WELDING!

GAS PRESSURES

For all welding the DHC 2000 Torch functions on equal pressures and equal volumes of oxygen and acetylene.

OXYGEN 4 psi (28 Kpa)
ACETYLENE 4 psi (28 Kpa)
PURGING

Always purge system before using. Read all steps and fully understand this procedure prior to doing it.

Warning: Purge only in a well ventilated area. Do not direct flow of gas towards any person or any flammable materials. Do not purge near open flames or any source of ignition.

1. With both valves on the torch body closed and the trigger button locked in the off position, slowly open supply valve on the Oxygen cylinder, then adjust regulator to 4 psi or until the oxygen gauge shows a reading.
2. Open the Oxygen (blue) torch valve and allow gas to flow about one second for each ten feet of hose length. Close torch valve.
3. Slowly open supply valve on the Acetylene cylinder not more than one full turn, then adjust regulator to 4 psi pressure.
4. Open the Acetylene (red) torch valve and allow gas to flow for about one second for each ten feet of hose length. Close torch valve.
5. The torch is now purged.

PRESSURE SETTING

Method 1: Pressures are set at 4psi using gauges on regulators. This first method requires that you have pressure gauges fitted to your oxygen and acetylene cylinders that can reliably indicate as low as 4 psi. If your gauges are not capable of establishing 4 P.S.I. use Method 2 to set up correct pressures.

Method 2: Setting Pressures using flame characteristics. This method is used if you do not have a pressure gauge fitted to your oxygen or acetylene cylinder that can reliably indicate as low as 4 psi.

Read all steps and fully understand this procedure prior to doing it.

1. Fit the No. 3 tip (3 grooves) to the shank. Ensure that the shank is firmly tightened within the barrel.
2. With both valves on the torch body closed and the trigger button locked in the off position, slowly open supply valve on the Oxygen cylinder.
3. Slowly open supply valve on the Acetylene cylinder not more than one full turn, then adjust regulator to 4 psi pressure.
4. Open the Acetylene (red) torch valve 1/2 turn and light the flame.
5. Now fully open (at least two turns) the Acetylene (red) valve. A bright full flame will result.
6. Slowly open the oxygen (blue) torch valve until fully open, at least two turns.
7. Slowly open the Oxygen regulator until you get a neutral flame. (Usually there will be no pressure reading on the Oxygen gauge).
8. The unit is now set at approximately 4 psi. (28 Kpa) for both Oxygen and Acetylene. Once this pressure setting is achieved any size tip can be used with the gas flow now being controlled at the valves on the torch.
9. Flame Cone should be 1/2" long, if not adjust until this dimension is obtained. (See Fig. 6 below)
EXTINGUISH FLAME
To extinguish the flame, the normal method is to turn off the acetylene control valve before turning off the oxygen control valve.

FLAME CHARACTERISTICS

FLAME SETTING

JUST OFF FEATHER (J.O.F.)
Equal Oxygen and Acetylene

CARBURIZING
Excess Acetylene

OXIDIZING
Excess Oxygen

The performance of the DHC 2000 is **TOTALLY** dependent on the correct flame setting. Regardless of tip size, the flame MUST be set in the "**JUST OFF FEATHER**" (J.O.F.) condition. The only exception to this is when welding stainless steel, where a carburizing flame is used. To obtain a J.O.F. flame, start with a carburizing flame and gradually increase the Oxygen or decrease the Acetylene until the feather has **JUST** disappeared.

When J.O.F. has been obtained a dark neutral streak or shadow will appear to run from the tip of the cone. If the cone is taken beyond this point, by increasing the oxygen, the neutral streak will disappear. This is now an oxidizing flame.

USE CARBURIZING FLAME WITH INNER CONE TO WELD STAINLESS STEEL OR STAINLESS TO OTHER METAL.

TIP CLEANING
Always use the plain wire tip cleaners provided as part of your torch kit.

USE CARBURIZING FLAME WITH INNER CONE TO WELD STAINLESS STEEL OR STAINLESS TO OTHER METAL.
TIP SELECTION

A range of seven (7) tips are used to cover normal welding. An additional eighth tip is used for cutting only. Do not use large brass tips for cutting thick steels. Tip will over heat and fail.

APPROXIMATE GUIDE TO USE OF TIPS - FIG. 5

No. 00 Tip. (Identified by diamond knurl on barrel)

Used for very fine work requiring the smallest possible flame. Jewelry & 24-28 gage steel.

No. 0 Tip. (Identified by smooth barrel)* (optional tip)

For use in welding materials up to 1.5mm (1/16”). 20-22 gage steel.

No. 0.5 Tip (Identified by single V groove on square barrel)* (optional tip)

*This tip is ideal for use in extensive welding of 20 ga.- 1/16 material.

No. 1 Tip (Identified by single groove on barrel)

For use in welding materials of 1.5mm to 3.0mm (1/16” to 1/8”).

No. 2 Tip (identified by two square grooves knurl on barrel)

For use in welding materials of 3mm to 6mm and (1/8” to 1/4”)

No. 2.5 Tip (Identified by straight on barrel)* (optional tip)

*This tip is useful for heavy steel cast aluminum welding over 1/4”.

No. 3 Tip (Identified by three square grooves on copper barrel)

*Copper Cutting Tip (Identified by color and diamond knurl on barrel)

*For use as a heating tip and set up purposes. Can also be used for heavy welding of cast, steel & aluminum.

For use only when cutting.
WELDING POSITION

For all welding, the unit should be approximately 10° to 20° off the perpendicular (or 70° to 80° from the material being welded.)

this is an important technique change. quality welding will not be obtained unless followed.

The greatest heat source is between 3mm to 5mm (1/8"-3/16") from the tip of the cone.
WELDING TECHNIQUE

Due to the unique characteristics of the DHC 2000 flame, the cleaning of material to be welded and the use of flux is in many cases unnecessary.

A DIP IN - DIP OUT ACTION should be adopted.

DIP IN - DIP OUT
FIG 8

FEED THE WELDING ROD UNDER AND BEHIND THE TIP OF THE FLAME CONE.

ROD POSITION
FIG. 9

IT IS IMPORTANT FOR THE FLAME TO BE IN FRONT OF THE WELDING PROCESS as the molten metal will follow the flame (frequently referred to as a capillary action).
DO NOT push the molten metal forward with the flame (face feeding). Keep the flame moving forward as fast as the welding process will allow, if the flame is stationary the molten deposit will build up behind the flame.

BACKHAND WELDING

Backhand welding is a normal process which can be simply achieved using the DHC 2000 Torch. It is usually recommended for steel plate exceeding 5mm (3/16") thickness.
TEMPERATURE

It should be noted an increase in gas pressure will NOT increase the temperature rating of the flame, as the unit is designed to operate at maximum efficiency at 4 psi (28 Kpa) If a greater volume of heat is required, increase the size of the flame or change to a larger tip.

FLUXES

In all instances where fluxes are used, minimal quantities are required. There are frequent occasions where no flux is required.

DO NOT use heavy coatings of flux.

SUGGESTED METHOD OF FLUXING

A method of fluxing a welding or brazing rod, to minimize the amount of flux used, is to put the flux into a fluxing stand, then wipe off the excess with a piece of scrap wood or similar, back into the flux container, leaving a residue in the flux stand. Heat the rod for about 8" (200 mm) of its length and place in the vee area. Do not twist the rod as enough flux will adhere to facilitate the weld or braze. For mixing ratios refer to manufacturers label.

PREPARATION - CLEANING

The cleaning of the area to be welded is, in most cases, unnecessary.

Salt, sand and carbon deposits should be removed.

CUTTING - OXYGEN AND ACETYLENE

Cutting with the DHC 2000 Torch requires a different technique to that of conventional equipment. Attention should be given to all details set out in this section.
CUTTING - THICK STEEL

Fig 13. The DHC 2000 Torch shown assembled for cutting thick steel using the over cutter, complete with guide wheels and optional heat shield.

OXYGEN PRESSURES
The following is the suggested oxygen pressure for cutting steel of different thickness. This suggestion can be adapted to suit individual operators.

1/4” 8-12 PSI 1/2” 14-16 PSI 3/4” 18-20 PSI 1” 22-25 PSI

ACETYLENE PRESSURE
For all cutting, acetylene is maintained at 4 psi (28 Kpa)

ASSEMBLY
Fit the cutting attachment to the DHC 2000 Torch as shown in Fig. 13. This is accomplished by first removing the ‘Body Plug’ from the cutting port, then (without a heating tip fitted) slide the cutting attachment onto the shank while engaging the threaded fitting into the open cutting port. Tighten the threaded fitting sufficiently to prevent oxygen leakage as well as securing the cutting attachment in place. The ‘Copper Cutting Tip’ is fitted to the cutting attachment and the Number 2 Tip is fitted to the shank for heating. The use of the guide wheels is optional; however it is recommended that the heat shield always be used when cutting.
TRIGGER

The trigger button is located on the body of the torch and is in the ‘ON’ position when the arrow is pointing upwards as in FIG. 13. To lock ‘OFF’, pull out and turn to left or right as in FIG. 13. It is recommended to have the trigger in the ‘OFF’ position when welding, but it must be in the ‘ON’ position when cutting.

SETTING THE FLAME FOR CUTTING

When using your torch for cutting steel it is important to note that the oxygen supply to the torch is shared between the heating flame and the cutting flame. Thus when the cutting trigger is squeezed the heating flame may become acetylene rich (carburizing). The heating flame must be adjusted to be correct while oxygen is flowing to the cutting tip as described below.

1. Light the torch and establish a flame as described in FLAME DETAIL Fig.1.
2. Squeeze the trigger to allow oxygen to flow through the cutting tip.
3. With the trigger still depressed, adjust the flame to the desired size in Just Off Feather condition
4. Release the trigger

PROCEDURE

Heat the edge of the steel to a bright cherry red, depress the trigger and move the oxygen delivery point over the heated edge - cutting will commence.

Beveling can be carried out by angling the handpiece in the direction the beveled angle is required.

Cutting 1/8” steel use No. 1 tip to heat and No. 1 or copper tip to cut.

IMPORTANT - AT ALL TIMES WATCH THE OXYGEN DELIVERY POINT, NOT THE FLAME to ensure the correct distance from the material is maintained.
TIP POSITION - CUTTING STEEL PLATE.

FIG. 14

IMPORTANT:
The oxygen delivery point (cutting tip) must be just out of the flame area. The flame size can vary for thickness of material being cut and operator technique.

For any oxygen and acetylene cutting, whether the unit is used manually or a wheel guide is used, the unit is held with the oxygen delivery point perpendicular (90 degrees) to the surface of the material being cut. The oxygen delivery point should be maintained approximately 1/16" (1.5mm) from the surface to be cut.

Piercing holes is achieved using the normal method i.e. after bringing the surface to a very bright red, raise the oxygen delivery point to approximately 12mm (1/2") before introducing the oxygen. Once the plate is penetrated, return to the normal height 1.5mm (1/16") above work and proceed to cut the hole.

For optimum cutting, the oxygen delivery point should follow immediately behind the heating point.

(1) Use a No. 2 tip at all times. The No. 1 and No. 3 tip should not be used in the cutting process.
CUTTING - SHEET STEEL

FIG. 15 The DHC 2000 Torch shown assembled for cutting sheet steel using the under cutter.

OXYGEN PRESSURE
Up to 3mm (1/8") thick 4 to 10 psi. (28 to 70 Kpa)

ACETYLENE PRESSURE
Acetylene is maintained at 4 psi. (28 Kpa)

Cutting 1/8” steel use No. 1 tip to heat and No. 1 or copper tip to cut.

ASSEMBLY

Fit the cutting attachment to the DHC 2000 Torch as shown in Fig. 15. The Copper Cutting Tip is fitted to the cutting attachment and the Number 0 Tip is used for heating. The use of wheels is optional; however, it is recommended that the heat shield be used when cutting.

NOTE: Cutting Tip size can be smaller for light sheet metal cutting (.020-.060 thick)

CAUTION: Prolong us or over heating of brass tips during cutting will damage brass tip. Use copper cutting tip when ever possible.
TRIGGER

The trigger button is located on the body of the torch and is in the ‘ON’ position when the arrow is pointing upwards. To lock ‘OFF’, pull out and turn to left or right as in FIG. 15. It is recommended to have the trigger in the ‘OFF’ position when welding, but it must be in the ‘ON’ position when cutting.

SETTING THE FLAME FOR CUTTING SHEET STEEL

When using your torch for cutting steel it is important to note that the oxygen supply to the torch is shared between the heating flame and the cutting flame. Thus when the cutting trigger is squeezed the heating flame may become acetylene rich (carburizing). The heating flame must be adjusted to be correct while oxygen is flowing to the cutting tip as described below.

1. Light the torch and establish a flame as described in Section 16.
2. Squeeze the trigger to allow oxygen to flow through the cutting tip.
3. With the trigger still depressed, adjust the flame to the desired size in Just Off Feather condition (Approx. 3 to 4mm - 1/8” to 3/16”)
4. Release the trigger

TIP POSITION - CUTTING SHEET STEEL

FIG. 16
PROCEDURE

Heat the edge of the steel to a bright red, depress the trigger and move the oxygen delivery point over the heated edge - cutting will commence.

The flame size can vary for thickness of plate and operator technique.

Position the oxygen delivery point (cutting tip) should be at approximately 45∞ from the surface of the material being cut. The operator may wish to slightly vary this angle to suit individual style.

IMPORTANT - AT ALL TIMES, WATCH THE OXYGEN DELIVERY POINT (NOT THE FLAME) and maintain the cutting tip no more than 1.5mm (1/16") from the surface being cut. The cutting tip can be allowed to touch the surface although this will slightly reduce tip life.

CUTTING (Controlled Melting) OF NON-FERROUS METALS, CAST IRON AND LIGHT STEEL

Due to the confined heat zone and the non-oxidizing characteristics of the DHC 2000 torch flame, metals such as copper, brass, aluminum, cast iron and stainless steel can now be cut with a controlled melting process.

Assemble the unit as for welding.

A guide to the tip size to be used for specific material thickness can be assessed by using the tip that will normally weld the material.

Extend the cone to the maximum setting of the tip in use attaining the “just off feather” condition. The point of the cone is used as the cutting media. The handpiece is tilted to right or left approximately 10-40∞ depending upon which side of the material is required to remain a clean edge.

ACETYLENE AND AIR HEATING ATTACHMENT (OPTIONAL FEATURE)

For soft soldering, tinning, silver soldering and general light heating without the oxidizing of materials. The acetylene and air tip can be used in many instances. A soldering bit can be fitted for continued heating in soft soldering.
ASSEMBLY

Remove tip and shank from barrel and insert acetylene and air piece to barrel as shown in Fig. 17. Tighten with wrench provided. Do not over tighten. The acetylene setting is 4 psi (21-28 Kpa)

IMPORTANT OXYGEN MUST NEVER BE USED WITH THE AIR-ACETYLENE HEATING ATTACHMENT.

PROCEDURE

With the acetylene cylinder supply valve open a maximum of one turn and regulator set at 4 psi, open the acetylene valve on the torch body and light the flame at the end of the Air-Acetylene attachment. A cone condition will form in all instances regardless of low settings at the torch body valve. Too high a flow or pressure will extinguish the flame when the handpiece control valve is fully open.

Should a burning occur at the holes of the air-acetylene attachment (this can occur if the acetylene pressure is very low), an increase of acetylene will immediately allow the cone to ‘fix’ at the tip.

MAINTENANCE INSTRUCTIONS

Check Valves

Leak test Check Valves at least every six months, as follows:
1. Shut off fuel gas supply and disconnect hose from check valve.
2. Set oxygen regulator to 5 P.S.I., open all gas valves on torch or cutting attachment.
3. Plug tip and check for reverse flow to fuel gas check valve. Use soapy water or immerse in water to check for leaks. Set pressure to zero after test.
4. Reconnect fuel gas hose and disconnect oxygen hose.
5. Repeat steps 2 and 3 using fuel gas regulator as pressure source.
6. Reconnect hoses and purge system before use.

Regulator Test

A leak test of the regulators may be made as follows: (also see your regulator instruction manual)
1. Shut off acetylene gas regulator by turning counter-clockwise until loose.
2. Close fuel acetylene cylinder valve.
3. Close acetylene (red) torch valve.

NOTE:
• Watch acetylene cylinder pressure gage for several minutes. A pressure drop indicates a leak in the inlet side. Tighten connection and recheck.
• Also watch the delivery pressure gauge. A rise in pressure indicates a leak in the regulator valve.
• If leak cannot be stopped, DO NOT USE THE REGULATOR!
• All gauges should read zero when the pressure is removed. If they do not, the gauges may be damaged. If damaged, check system for cause of damaged gauges. Have the damage repaired by a qualified repairman or replace the damaged gauges.
• Repeat procedure shown above for the oxygen regulator.
CLEANING GAUGES

The gauge crystals are typically made of Lexan. Use only soapy water to clean, then wipe dry using soft cloths. Do not use solvents. © General Electric Company

CHANGING CYLINDERS

A cylinder is depleted and is considered empty when it is unable to deliver fuel gas or oxygen to the torch tip at the set pressure.
1. Close supply valve of depleted cylinder and bleed off all gas in depleted line at torch. Close torch valve.
2. Disconnect hose and regulator from depleted cylinder.
4. Follow the procedure under set-up instructions provided with the new cylinder.
5. Purge system (see below)

TORCHES AND CUTTING ATTACHMENTS

1. Periodically check for leaks using soapy water or by immersing in water and checking for bubbles.
2. Tighten connections and packing nuts to stop leaks. Do not use excessive force.

STORAGE

When not in use, store equipment in a clean and safe place.

FAULT FINDING

WELDING

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>POSSIBLE CAUSE</th>
<th>REMEDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handpiece getting hot</td>
<td>1. Incorrect pressure</td>
<td>Pressure setting, page 3</td>
</tr>
<tr>
<td></td>
<td>2. Incorrect flame setting</td>
<td>Flame setting, page 5</td>
</tr>
<tr>
<td></td>
<td>3. Reflected heat from job</td>
<td>Use heat shield</td>
</tr>
<tr>
<td>Tip backfiring</td>
<td>1. Tip too large for job</td>
<td>Tip selection, page 6</td>
</tr>
<tr>
<td></td>
<td>2. Flame setting too low for tip size</td>
<td>Tip selection, page 6</td>
</tr>
<tr>
<td></td>
<td>3. Flame cone forced into molten metal</td>
<td>Welding technique, page 7</td>
</tr>
<tr>
<td>Unsatisfactory weld</td>
<td>1. Incorrect flame setting</td>
<td>Flame setting, page 5</td>
</tr>
<tr>
<td></td>
<td>2. Torch held at wrong angle</td>
<td>Welding position, page 6</td>
</tr>
<tr>
<td></td>
<td>3. Rod not being used correctly</td>
<td>Welding technique, page 7</td>
</tr>
<tr>
<td>Fluctuating flame</td>
<td>1. Oxygen or acetylene regulator</td>
<td>Have regulators serviced.</td>
</tr>
<tr>
<td></td>
<td>diaphragm faulty</td>
<td></td>
</tr>
</tbody>
</table>

Page 17
CUTTING

PROBLEM POSSIBLE CAUSE REMEDY

Wide cut, excessive Slag
1. Oxygen delivery point too far from surface being cut
2. Insufficient pressure

Burning off end of
1. Tip inside flame area
2. Tip allowed into molten metal

oxygen delivery tip

PARTS LIST

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3006-106</td>
<td>Shank</td>
<td>W3103-378</td>
<td>Tip Cleaner Set</td>
</tr>
<tr>
<td>W3031-142</td>
<td>Body Plug</td>
<td>W3105-369</td>
<td>Trigger Button Assembly</td>
</tr>
<tr>
<td>W3039-160</td>
<td>#0 Tip</td>
<td>W3107-365</td>
<td>Oxygen Valve</td>
</tr>
<tr>
<td>W3040-122</td>
<td>#1 Tip</td>
<td>W3107-366</td>
<td>Acetylene Valve</td>
</tr>
<tr>
<td>W3041-123</td>
<td>#2 Tip</td>
<td>W3108-272</td>
<td>Cutting Attachment</td>
</tr>
<tr>
<td>W3041-159</td>
<td>Copper Cutting Tip</td>
<td>W3111-273</td>
<td>Sheet Metal Cutter</td>
</tr>
<tr>
<td>W3042-124</td>
<td>#3 Tip</td>
<td>W3110-143</td>
<td>Brackets</td>
</tr>
<tr>
<td>W3045-132</td>
<td>Handle - Right</td>
<td>W3102-148</td>
<td>Nut / Bolt</td>
</tr>
<tr>
<td>W3044-133</td>
<td>Handle - Left</td>
<td>W3101-363</td>
<td>Guide Rails</td>
</tr>
<tr>
<td>W3052-155</td>
<td>Wrench</td>
<td>W3100-368</td>
<td>Torch Body</td>
</tr>
</tbody>
</table>

OPTIONAL ACCESSORIES

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W3038-176</td>
<td>#00</td>
<td>W3047-361</td>
<td>Shield</td>
</tr>
<tr>
<td>W3039-161</td>
<td>#0.5 Tip</td>
<td>W3005-000</td>
<td>Curved Extension</td>
</tr>
<tr>
<td>W3040-132</td>
<td>#1.5 Tip</td>
<td>W3004-000</td>
<td>Straight Extension</td>
</tr>
<tr>
<td>W3043-177</td>
<td>#2.5 Tip</td>
<td>W3104-364</td>
<td>Air / Acetylene Tip</td>
</tr>
</tbody>
</table>
We believe the two main ingredients for successful welding are observation on the part of the welder and the use of the DHC 2000 Torch.

TO BE RETAINED BY CUSTOMER

Serial No. C

Fill in the number stamped on valve body opposite control valves.

COBRA: Lifetime Limited Warranty

The DHC 2000 Welding Cutting handpiece is guaranteed for the lifetime of the original purchaser against any defect due to faculty material or workmanship, excluding tips. Upon the discretion of the manufacturer you will receive free of charge, a replacement unit or the free repair and replacement of faculty parts. In returning a unit all original standard equipment should also be returned. Cobra Torch, Inc. accepts no responsibility for defects, damage or faculty performances caused by misuse, careless handling or where repairs have been made or attempted by unauthorized persons. No other guarantees, written or verbal, are authorized to be made on the behalf of Cobra Torch, Inc. All other conditions and warranties whether expressed or implied are, to the extent permitted by law, hereby excluded.

Date of Purchase________________________

SOLD BY:

MFD BY:

COBRA TORCHES, INC.

219 South St.
Rochester, MI 48307
Phone: 248-601-1664
Fax: 248-652-6544